Name: \qquad Hour: \qquad
Solve each application problem by solving a quadratic equation. Round answers to the nearest tenth when necessary. Don't forget units, and write answers in SENTENCE form.

1. An object is dropped from a 56 -foot bridge over a bay. How long will it take for the object to reach the water?
2. Many birds drop shellfish onto rocks to break the shell open and get the food inside. Suppose a crow drops a snail from a height of 20 feet. How long does it take the snail to hit the ground?
3. An object is dropped from the top of a 240 -foot tall observation tower. How long will it take for the object to reach the ground?
4. A stunt man working on the set of a movie is to fall out of a window 100 feet above the ground. An air cushion that is 9 feet high is placed below him for safety. How long does he fall before landing on the cushion?
5. A ball is dropped from a sixth-floor window at a height of 70 feet. There is a $2^{\text {nd }}$ floor balcony below that is 24 feet above the ground. When will the ball land on the balcony?
6. An object falls from the top of a 100 -foot communications tower. There is a 15 -foot semi-truck beneath it. After how much time will the object hit the top of the truck?
7. On any planet, the height h (in feet) of a falling object t seconds after it is dropped can be modeled by $h=-\frac{g}{2} t^{2}+h_{0}$ where h_{0} is the initial height and g is the acceleration due to the planet's gravity. For each planet below, find the time it takes for a rock dropped from a height of 200 feet to hit the ground.
a. Mars: $\mathrm{g}=12$
b. Jupiter: $\mathrm{g}=81$
c. Neptune: $\mathrm{g}=36$
8. The equation $h=0.019 \mathrm{~s}^{2}$ gives the height h (in feet) of the largest ocean waves when the wind speed is s knots. How fast is the wind blowing if the largest waves are 15 feet high?
